A Search for Supersymmetry Using Events with Photons and Large Missing Transverse Energy at CMS Rachel Yohay University of Virginia 19th International Conference on Supersymmetry and Unification of Fundamental Interactions August 30, 2011 on behalf of the CMS collaboration ### Outline - Introduction - Gauge-mediated SUSY searches with photons - Next-to-lightest superpartner (NLSP) type → final state - 3 complementary searches - Physics object selection in CMS - Photons - Jets and missing transverse energy (ME_T) - Leptons - Event selection - Backgrounds - Results - Interpretation in terms of simplified SUSY models - Conclusions CMS-PAS-SUS-11-009 arXiv:1105.3152 ### Gauge-mediated SUSY searches with photons #### LEP (1989-2000) - Minimal GMSB model (SPS8) [2] - Neutralino pair production - •m_{neutralino} > 97 GeV for short-lived neutralino #### **Tevatron Run II (2001-2010)** - Minimal GMSB model (SPS8) [2] - Chargino and neutralino pair production - •m_{neutralino} > ~170 GeV (Λ > 124 TeV)^t for short-lived neutralino #### LHC7 (2009-2011) - •General model parametrized in terms of tan β and squark, gluino, and wino/bino/higgsino masses - •No assumptions on the number of messengers, the messenger mass, or the SUSY breaking scale - Squark and gluino production - Short-lived neutralino ### GGM final states Bino NLSP: neutralino(bino) → γ+gravitino Bino NLSP: neutralino(bino) $\rightarrow \gamma$ +gravitino or neutralino(bino) \rightarrow **Z**(\rightarrow jets)+gravitino #### I+γ+jets+ME_T Wino NLSP: neutralino(wino) $\rightarrow \gamma$ +gravitino and chargino(wino) \rightarrow W(\rightarrow Iv)+gravitino #### **Y+jets+ME**_T Wino NLSP: neutralino(wino) $\rightarrow \gamma$ +gravitino and chargino(wino) \rightarrow W(\rightarrow jets)+gravitino # 3 complementary searches Search #1: 2 photons + ≥1 jet + ME_T (bino NLSP) 1.14 fb⁻¹ Search #2: photon + lepton + ME_T (wino NLSP with leptonic W decays) 36 pb⁻¹ Search #3: photon + ≥3 jets + ME_T (bino NLSP, wino NLSP) 1.14 fb⁻¹ ### Physics object selection in CMS - Isolated leptons - Electrons - Inconsistent with ECAL noise - Inconsistent with photon conversion Muons - Isolated photons - Inconsistent with ECAL noise - No matching hit pattern in the silicon pixel detector - Jets and MET - •Anti- k_T algorithm with R = 0.5 - Inconsistent with ECAL and HCAL noise ### Event selection Using the CMS reconstructed physics objects, build 3 different event selections corresponding to the 3 GGM topologies | Topology | No. isolated photons | No. isolated
leptons (e or μ) | No. jets | |--------------------|---|--|---| | Double
photon | ≥2 with: •Leading E _T > 45 GeV •Trailing E _T > 30 GeV •IηI < 1.4442 | No requirement | ≥1 with: •E⊤ > 30 GeV •IηI < 2.6 | | Photon +
lepton | ≥1 with: •E _T > 30 GeV •IηI < 1.4442 | ≥1 with: •E _T > 20 GeV •IηI < 2.1 | No requirement | | Single
photon | ≥1 with: •E _T > 75 GeV •IηI < 1.4442 | No requirement | ≥3 with: •E _T > 30 GeV •IηI < 2.6 + H _T * > 400 GeV | *H_T is the scalar sum of jet p_T in the event # Backgrounds: QCD - Double photon - Dominant: QCD with fake MET - Multijet: at least 2 jets misidentified as photons - •γ + jet: 1 jet misidentified as a photon - QCD diphoton - Photon + lepton - Subdominant: QCD with fake MET - Single photon - Dominant: QCD with fake MET - •γ+jet - QCD multijet with at least 1 jet misidentified as a photon # Estimating the QCD background (1) What is a well-measured EM object? | Di-electron | Z→e+e- decays
"e" = γ + pixel match | |---------------------------|--| | Di-fake | Very electromagnetic di-jets (pixel match veto) | | Single fake | 1 very electromagnetic jet (pixel match veto) | | Fake lepton + fake photon | Di-jets (well-isolated jet ["lepton"] + very electromagnetic jet ["photon"]) | - EM << hadronic energy resolution ⇒ fake ME_T due entirely to jet mismeasurement - Measure QCD background from data—control sample with well-measured EM objects to model the QCD fake ME_T spectrum - Reweight ME_T spectrum of control sample by p_T^{EM} (candidate)/p_T^{EM}(control) - Normalize the predicted QCD fake ME_T spectrum to a signaldepleted low-ME_T region # Estimating the QCD background (2) #### • Double photon: - Di-electron and di-fake control samples - Reweight by di-EM p_T - Normalize in ME_T < 20 GeV region - Single photon: - Single fake control sample - Reweight by ratio (candidate photon p_T/fake p_T) - Normalize in ME_T < 100 GeV region - Photon + lepton: - Di-electron and fake lepton + fake photon control samples - Reweight by di-EM p_T and p_T^I - Normalize in ME_T < 30 GeV region # Backgrounds: electroweak #### Double photon - Subdominant: electroweak processes with real MET - W(→ev)γ: electron misidentified as a photon - W(→ev)+jet: electron and jet misidentified as photons #### Photon + lepton - Subdominant: jets faking photons in events with real MET - •W(\rightarrow ev)+jet, W(\rightarrow μ v)+jet - Subdominant: electrons faking photons - •Z→ee - ttbar with at least 1 W decaying to an electron #### Single photon - Subdominant: electroweak processes with real MET - W→ev, Z→ee, or ttbar semileptonic with 1 electron misidentified as a photon ### Estimating the electroweak background - Estimate the **electron** \rightarrow **photon mis-ID rate** $f_{e\rightarrow\gamma}$ by fitting the di-EM invariant mass spectra in the di-electron and e γ samples - Scale the ME_T distribution of an appropriate electron control sample by f_{e→γ} - Double photon search: ey sample (2 objects passing the candidate photon ID criteria; 1 with pixel match [e], 1 with pixel match veto [γ]) - Single photon search: **single e** sample (e as above) weighted by γ /e p_T ratio as on slide 12 - Photon + lepton search: lepton + e (e as above) sample - Estimate the jet→photon mis-ID background by scaling a lepton + "fake photon" control sample by jet→photon mis-ID rate (photon + lepton search only) # Backgrounds: MC #### Double photon - Negligible: irreducible backgrounds - •Wγγ (total cross section ~7 fb at 14 TeV LHC) [6] - Zүү #### Photon + lepton - Dominant: $W(\rightarrow ev)\gamma$, $W(\rightarrow \mu v)\gamma$ - MadGraph tune D6T, BAUR NLO, K-factors range ~2-3 - Negligible: ttbar+γ #### Single photon - Subdominant: initial state radiation (ISR) or final state radiation (FSR) of photons in events with no electron (e.g. ttbar/W/Z→hadrons) - Pythia MC with 100% uncertainty (contribution very small) # Candidate ME_T spectra (1) Double photon search Observed events consistent with predicted background Single photon search # Candidate ME_T spectra (2) Observed events consistent with predicted background Example GGM model: $m_{\widetilde{g}}=m_{\widetilde{q}}=450~GeV,\,m_{\widetilde{\chi}_1^0}\approx m_{\widetilde{\chi}_1^+}=195~GeV$ # Upper limit calculation - "Simplified model" GGM signal MC [7] - Next to leading order production cross-sections calculated with PROSPINO 2.1 - Pythia 6.422 for hadronization and decay - Full CMS detector simulation based on GEANT - PDF uncertainties calculated using PDF4LHC recommendations [8] - 3 different NLSP scenarios - $\gamma\gamma + ME_T$, $\gamma + ME_T$ 1. Bino NLSP: $M_1 = 375$ GeV, $M_2 = 3.5$ TeV, tan $\beta = 2$, squark and gluino masses in [400 GeV, 2000 GeV], sleptons and all gauginos except the lightest neutralino have mass 3.5 TeV, heavy right-handed squarks (GGM sum rules) - Wino NLSP (1): $M_1 = 3.5$ TeV, $M_2 = 375$ GeV, tan β = 2, squark and gluino masses in [400 GeV, 2000 GeV], sleptons and all gauginos except the lightest neutralino and chargino have mass 3.5 TeV, heavy right-handed squarks (GGM sum rules) - $\gamma + I + ME_T \rightarrow 3$. Wino NLSP (2): $m_{squark} \sim m_{gluino}$, tan $\beta = 2$, NLSP mass > 100 GeV - CL_S upper limit calculation for scenarios 1 and 2 [9], Bayesian upper limit calculation with flat prior [10] for scenario 3 # Upper limits Double photon search Bino NLSP Single photon search Bino NLSP CMS preliminary $\int L dt = 1.14 fb^{-1}$ Single photon search Wino NLSP ### Exclusion contours for bino NLSP #### Double photon search #### Single photon search 1γ , >=3 jets, MET> 200 GeV | Search region | No. expected | No. observed | |--|---------------------------------|--------------| | γγ + ≥1j + (ME _T > 100 GeV) | 1.5 ± 0.8(stat.) ± 0.6(syst.) | 0 | | γ + ≥3j + (ME _T > 200 GeV) | 7.24 ± 2.6(stat.) ± 1.53(syst.) | 7 | #### Bino NLSP exclusion in the mgluino-mneutralino plane 600 800 400 200 Exact same analysis, exclusion just plotted in a different plane 1000 1200 M_{√0} (GeV/c²) ### Exclusion contours for wino NLSP #### Single photon search #### Photon + lepton search | Search region | No. expected | No. observed | |---|---------------------------------|--------------| | $\gamma + e + (ME_T > 100 \text{ GeV})$ | 1.74 ± 0.43(stat. ⊕ syst.) | 1 | | $\gamma + \mu + (ME_T > 100 \text{ GeV})$ | 1.59 ± 0.39(stat. ⊕ syst.) | 1 | | γ + ≥3j + (ME _T > 200 GeV) | 7.24 ± 2.6(stat.) ± 1.53(syst.) | 7 | ### Conclusions CMS simulation $m_{squark} = 1.25 \text{ TeV}, m_{gluino} = 1.2 \text{ TeV}, m_{neutralino} = 225 \text{ GeV}$ - Searches in double photon, single photon, and photon + lepton final states are powerful tools for observing SUSY - Clean trigger objects - Manageable backgrounds that can mostly be estimated from data - CMS actively searching for gaugemediated SUSY in a variety of ways - In the classic bino NLSP scenario, m_{squark} = m_{gluino} ~ 950 GeV excluded - In the wino NLSP scenario, m_{gluino} ~ 650 GeV excluded ~independently of m_{squark} and m_{wino} # Backup ### General gauge mediation at the LHC - General gauge mediation (GGM) - P. Meade, N. Seiberg, and D. Shih, Prog. Theor. Phys. Suppl. 177 (2009) 143 (arXiv:0801.3278v3 [hep-ph]) - Definition of gauge mediation: the MSSM and the SUSY-breaking sector are linked only by nonzero values of the MSSM gauge coupling constants - Different theories of gauge mediation can arise from the single general framework - Prescription provided for calculating the soft masses of the spectrum - SUSY-breaking sector leads to mass relations between the sfermions, constraining the allowed parameter space - Consequences for phenomenology - Enhancement of gg parton luminosity at the LHC with respect to quark-antiquark ⇒ can quickly probe models with light colored particles - 2. Lightest neutralino NLSP can be bino, wino, or higgsino, leading to distinct and exotic LHC final states # Photons - Photons - Isolated from jets - Tracker and calorimeter isolation + electromagnetic calorimeter (ECAL) shower shape variables reject photons within jets (i.e. from π^0 decay) - Ratio of energy in the hadronic calorimeter (HCAL) directly behind the photon candidate to ECAL energy rejects jets that have begun to shower in the ECAL - Inconsistent with ECAL noise - No matching hit in the silicon pixel detector # Jets and MET - Photons - Isolated from jets - Tracker and calorimeter isolation + electromagnetic calorimeter (ECAL) shower shape variables reject photons within jets (i.e. from π^0 decay) - Ratio of energy in the hadronic calorimeter (HCAL) directly behind the photon candidate to ECAL energy rejects jets that have begun to shower in the ECAL - Inconsistent with ECAL noise - No matching hit in the silicon pixel detector - Jets and MET - Particle-flow (PF) jets (anti- k_T algorithm with R = 0.5) - Inconsistent with HCAL noise - Corrected for pileup, p_T response, and η response - PF ME_T built from PF tracks and calorimeter clusters with jet corrections applied # Jets and MET #### Why jets? - •Strong production of SUSY guarantees at least 1 hard jet per event - •Jet requirement helps to suppress dijet and γ+jet backgrounds - Photons - Isolated from jets - Tracker and calorimeter isolation + electromagnetic calorimeter (ECAL) shower shape variables reject photons within jets (i.e. from π^0 decay) HF edge $l\eta l = 5.0$ - Ratio of energy in the hadronic calorimeter (HCAL) directly behind the photon candidate to ECAL energy rejects jets that have begun to shower in the ECAL - Inconsistent with ECAL noise - No matching hit in the silicon pixel detector - Jets and ME_T - Particle-flow (PF) jets (anti-k_T algorithm with R = 0.5) - Inconsistent with HCAL noise - Corrected for pileup, p_T response, and η response - PF ME_T built from PF tracks and calorimeter clusters with jet corrections applied ### Electrons and muons #### Leptons - Electrons - Isolated from jets (similar to photon isolation) - Inconsistent with ECAL noise - Good quality track match to ECAL cluster - Inconsistent with photon conversion - Within barrel muon trigger acceptance - Muons: - Isolated from jets (similar to photon isolation) - Good quality track - Matched to trigger object - Within barrel muon trigger acceptance #### Photons - Isolated from jets - Tracker and calorimeter isolation + electromagnetic calorimeter (ECAL) shower shape variables reject photons within jets (i.e. from π^0 decay) HF edge $l\eta l = 5.0$ - Ratio of energy in the hadronic calorimeter (HCAL) directly behind the photon candidate to ECAL energy rejects jets that have begun to shower in the ECAL - Inconsistent with ECAL noise - No matching hit in the silicon pixel detector - Jets and ME_T - Particle-flow (PF) jets (anti-k_T algorithm with R = 0.5) - Inconsistent with HCAL noise - Corrected for pileup, p_T response, and η response - PF ME_T built from PF tracks and calorimeter clusters with jet corrections applied ### Photon isolation criteria - ECAL isolation energy < 0.006E_T + 4.2 GeV - HCAL isolation energy < 0.0025E_T + 2.2 GeV - Tracker isolation energy < 0.001E_T + 2.0 GeV not to scale HCAL energy in R < 0.15 cone around photon candidate ECAL energy of photon candidate < 0.05 $$\sigma_{\eta\eta}^2 = \sum_{i=1}^{25} w_i (\eta_i - \bar{\eta})^2 / \sum_{i=1}^{25} w_i, < 0.011$$ Highest energy (photon seed) crystal where $w_i = \max(0, 4.7 + \ln(E_i/E))$, E_i is the energy of the i^{th} crystal in a group of 5×5 centred on the one with the highest energy, and $\eta_i = \hat{\eta}_i \times \delta \eta$, where $\hat{\eta}_i$ is the η index of the ith crystal [12] and $\delta \eta = 0.0174$; E is the total energy of the group and $\bar{\eta}$ the average η weighted by w_i in the same group [20]. # ECAL noise cleaning - 1. Form 3 × 3 matrix of crystals around the photon seed crystal - 2. Find the 2 highest energy crystals within the matrix - 3. If the sum of the energies of the 2 highest energy crystals divided by the sum of the energies of all 9 crystals within the matrix exceeds 0.95, reject the photon as ECAL noise ### Photon ID variables # Photon/lepton ID efficiency - Photon and lepton ID efficiencies taken from MC and corrected by (data efficiency)/ (MC efficiency) - Z→μμ events for muons - Z→ee events for electrons and photons - Photon ID cuts designed to behave similarly for electrons and photons - Signal MC acceptance × efficiency multiplied by 1 factor of ε_{data}/ε_{MC} per photon or lepton - Pixel match veto efficiency **estimated from MC**: (96.4 ± 0.5)% (stat. ⊕ syst. due to tracker material budget variation) | Particle | ε _{data} /ε _{MC} | |----------|------------------------------------| | Photon | 0.945 ± 0.068 | | Electron | 0.928 ± 0.015 | | Muon | 0.990 ± 0.001 | Errors on photon efficiency scale factor: Stat. ⊕ Syst.(Z signal and background shape variation) \oplus Syst.(pileup effects) ⊕ Syst.(MC electron/photon difference) # HCAL noise cleaning - 1. f_{HPD} ≤ 0.98, where f_{HPD} is the fraction of the jet's energy contributed by the highest energy hybrid photodetector - 2. n90Hits > 1, where n90Hits is the minimum number of HCAL channels containing 90% of the jet's energy - 3. EMF ≥ 0.01, where EMF is the electromagnetic fraction of the jet's energy See [14] # Particle flow (PF) algorithm (1) - Main idea: reconstruct each individual stable particle traversing the detector using an optimal combination of tracking and calorimetric information, with the aim of achieving the best possible energy resolution - 1. Reconstruct the fundamental detector objects via iterative procedures - Tracks in the inner silicon layers - High efficiency and low fake rate for charged hadrons in jets - Relaxed primary vertex constraint allows photon conversions, particles originating from nuclear interactions in the silicon, and long-lived particles to be reconstructed - Calorimeter clusters - Muon tracks in the outer muon layers - 2. Create a "block" of linked fundamental objects - Link silicon tracks to calorimeter clusters via ΔR_{track-cluster} (account for electron bremsstrahlung) - Link clusters in one calorimeter layer to clusters in a separate layer via ΔR_{cluster-cluster} - Link silicon tracks to muon tracks via global track X² # Particle flow (PF) algorithm (2) #### 3. ID the particles in the block - ► If global (silicon + muon layers) muon p_T is compatible with silicon track p_T, ID as a muon and remove corresponding tracks from block - ID electron tracks via special algorithm and removed all corresponding tracks and cluster from block - Remove fake tracks from the block - Pemove excess track-cluster links via ΔR_{track-cluster} minimization (but allow multiple tracks to be associated to one cluster) - If the cluster energy is significantly larger then the energy of the linked track, ID as a PF photon or PF neutral hadron and remove corresponding clusters from the block - If the cluster is not linked to a track, ID as a PF photon or PF neutral hadron and remove corresponding clusters from the block - Remaining track-cluster links are PF charged hadrons - Better performance in terms of jet energy resolution and jet energy correction uncertainties than typical calorimeter-only jet algorithms - See [15] for details and performance in LHC data # Electron selection | Cut | Value | | Notes | |--------------------|---------------------|----------------------|---| | | EB | EE | EB = ECAL barrel, EE = ECAL endcap | | рт | >20 GeV | >20 GeV | | | ΙηΙ | <1.444 | 1.566-2.1 | 1.444-1.566 is the crack between EB and EE | | ECAL isolation | <0.07E _T | <0.05E _T | Same cones as on slide 27 | | HCAL isolation | <0.01E _T | <0.025E _T | Same cones as on slide 27 | | Track isolation | <0.09E _T | <0.04E _T | Same cones as on slide 27 | | Missing track hits | ≤0 | ≤0 | Conversion rejection cut—(expected - actual) number of hits on track | | Δ(cot θ) | <0.02 | <0.02 | Conversion rejection $\text{cut}-\theta$ is the polar angle between the 2 conversion clusters | | Dist | <0.02 | <0.02 | Conversion rejection cut—distance between the 2 conversion tracks when they are parallel | | σηη | <0.01 | <0.03 | | | Δφ _{in} | <0.06 | <0.03 | Between the track momentum at the primary vertex and the cluster position | | Δηίη | <0.004 | <0.007 | Between the track momentum at the primary vertex and the cluster position | | H/E | <0.04 | <0.025 | | # Muon selection | Cut | Value | Notes | |--------------------------|--------------------|---| | рт | >20 GeV | | | ΙηΙ | <2.1 | Geometrical acceptance of the muon high level trigger | | Combined isolation | <0.15 | Combined isolation = (ECAL isolation + HCAL isolation + track isolation)/(muon p_T), cone size R = 0.3, muon track p_T and calorimeter energy subtracted | | Reconstruction algorithm | Global and tracker | Tracker muon = reconstructed from tracker hits only; global muon = reconstructed from tracker and muon station hits | | Muon chamber hits | ≥1 | | | Tracker muon match | ≥2 muon chambers | | | Tracker hits | >10 | | | Pixel hits | ≥1 | | | χ²/ndof | <10 | Global muon track fit | | ld _{xy} l | <2 mm | Transverse impact parameter | | High level trigger match | Yes | | # Backgrounds - Double photon - Dominant: QCD with fake MET - Multijet: at least 2 jets misidentified as photons - γ + jet: 1 jet misidentified as a photon - QCD diphoton - Subdominant: electroweak processes with real ME_T - W(→ev)γ: electron misidentified as a photon - W(→ev)+jet: electron and jet misidentified as photons - Negligible: irreducible backgrounds - Wγγ (total cross section ~7 fb at 14 TeV LHC) [6] - Zүү - Photon + lepton - Dominant: W(→ev)γ, W (→μν)γ - Subdominant: jets faking photons in events with real ME_T - W(\rightarrow ev)+jet, W(\rightarrow μ v)+jet - Subdominant: electrons faking photons - Z→ee - ttbar with at least 1 W decaying to an electron - Subdominant: QCD with fake ME_T - Negligible: ttbar+γ - Single photon - Dominant: QCD with fake MET - γ+jet - QCD multijet with at least 1 jet misidentified as a photon - Subdominant: electroweak processes with real ME_T - W→ev, Z→ee, or ttbar semileptonic with 1 electron misidentified as a photon - Initial state radiation (ISR) or final state radiation (FSR) of photons in events with no electron #### Fake lepton and EM object selection | Fake electron | | | |-----------------------|---------------------|----------------------| | Cut | Value | | | | EB | EE | | рт | >20 GeV | >20 GeV | | lηl | <1.444 | 1.566-2.1 | | ECAL isolation | <0.07E _T | <0.05E _T | | HCAL isolation | <0.01E _T | <0.025E _T | | Track isolation | <0.09E _T | <0.04E _T | | Missing track hits | ⊴0 | ≤0 | | Δ(cot θ) | <0.02 | <0.02 | | Dist | <0.02 | <0.02 | | $\Delta \varphi_{in}$ | <0.06 | <0.03 | | $\Delta\eta_{in}$ | <0.004 | <0.007 | | EM object | | | |-----------------|-----------------------------------|--| | Cut | Value | | | рт | >30 GeV | | | lηl | <1.4 | | | ECAL isolation | | | | | <(0.006E _T + 4.2 GeV) | | | HCAL isolation | <(0.0025E _T + 2.2 GeV) | | | Track isolation | <10 GeV | | | H/E | <0.05 | | | Noise-cleaned | Yes | | | Pixel match | No | | | Fake muon | | | |--------------------------|--------------------|--| | Cut | Value | | | p _T | >20 GeV | | | lηl | <2.1 | | | Combined isolation | 0.15-0.25 | | | Reconstruction algorithm | Global and tracker | | | Muon chamber hits | ≥1 | | | Tracker muon match | ≥2 muon chambers | | | Tracker hits | >10 | | | Pixel hits | ≥1 | | | χ²/ndof | <10 | | | ld _{xy} l | <2 mm | | | High level trigger match | Yes | | Fake electron: electron with only isolation requirements Fake muon: muon with relaxed isolation requirement EM object: photon with relaxed track isolation and no shower shape requirement ### Event selection Using the CMS reconstructed physics objects, build 3 different event selections corresponding to the 3 GGM topologies | Topology | No. isolated photons | No. isolated
leptons (e or μ) | No. jets | Trigger | |--------------------|---|--|---|--| | Double
photon | ≥2 with: •Leading E _T > 45 GeV •Trailing E _T > 30 GeV •lηl < 1.4442 | No requirement | ≥1 with: •E _T > 30 GeV •IηI < 2.6 | Single-leg seeded double photon trigger: •Leading/trailing E _T > 32/26, 36/22, or 40/28 GeV •Loose shower shape and H/ E reqs. on both legs | | Photon +
lepton | ≥1 with: •E _T > 30 GeV •IηI < 1.4442 | ≥1 with: •E _T > 20 GeV •IηI < 2.1 | No requirement | Single-lepton trigger: •E _T > 15 or 17 GeV (electron) •E _T > 9, 11, or 15 GeV (muon) | | Single
photon | ≥1 with: •E _T > 75 GeV •IηI < 1.4442 | No requirement | ≥3 with: •E _T > 30 GeV •IηI < 2.6 + H _T * > 400 GeV | Single-photon + H_T trigger: •Photon $E_T > 70$ GeV • $H_T > 350$ GeV | * H_T is the scalar sum of jet p_T in the event # Single fake definition | | |---| | Value | | >70 GeV | | <1.4442 | | <min(10 (0.006e<sub="" ×="">T + 4.2 GeV), 0.3E_T)</min(10> | | <min(10 (0.0025e<sub="" ×="">T + 2.2 GeV), 0.3E_T)</min(10> | | <min(10 (0.001e<sub="" ×="">T + 3.5 GeV), 0.3E_T)</min(10> | | No | | <0.98 | | Yes | | | and | Cut | Value | | |---------------------|-----------------------------------|--| | ECAL isolation | >(0.006E _T + 4.2 GeV) | | | ar | nd | | | HCAL isolation | >(0.0025E _T + 2.2 GeV) | | | or | | | | Track isolation | >(0.001E _T + 3.5 GeV) | | | 0 | r | | | $\sigma_{\eta\eta}$ | >0.011 | | | or | | | | H/E | >0.05 | | # fe-y calculation The number of events in the di-electron sample is given by $$N_{ee} = f_{e \to e}^2 N_{Z \to ee}$$ where $f_{e\to e}$ is the efficiency to correctly identify an electron via pixel match and $N_{Z\to ee}$ is the true number of Z \to ee events. The number of events in the e γ sample due to misidentification of 1 Z electron as a photon is given by $$N_{e\gamma}^Z = 2f_{e\to e}(1 - f_{e\to e})N_{Z\to ee}$$ Solving for $f_{e \to e}$, $$f_{e \to e} = \frac{1}{1 + \frac{1}{2} \frac{N_{e\gamma}^Z}{N_{ee}}}$$ The number of events in the $e\gamma$ sample due to correctly identifying a W electron is given by $$N_{e\gamma}^W = f_{e\to e} N_W$$ where N_W is the number of true $W \rightarrow e\nu$ events. The number of $\gamma\gamma$ events from W electron misidentification is given by $$N_{\gamma\gamma}^{EW} = (1 - f_{e \to e}) N_W$$ where we have neglected the contribution from Z electron misidentification since it is small (i.e., $f_{e\to\gamma}$ is small and the Z contribution involves $f_{e\to\gamma}^2$, since both electrons have to be misidentified). Since $$f_{e \to e} = 1 - f_{e \to \gamma}$$ solving for $N_{\gamma\gamma}^{EW}$ $$N_{\gamma\gamma}^{EW} = \frac{f_{e\to\gamma}}{1 - f_{e\to\gamma}} N_{e\to\gamma}$$ #### Check of the background estimation - Question: Can the QCD background prediction method described on slide 11 correctly predict the QCD contribution to the eγ (W-like) sample? - Answer: Yes - Reweight the di-electron ME_T spectrum such that the di-electron p_T spectrum matches the eγ di-EM p_T spectrum (i.e. use the method described on slide 11 to get a prediction for the QCD component of the eγ sample) - Observe an excess (esp. for ME_T > 30 GeV) of eγ events over the predicted QCD background - Excess is consistent with expected yield of Wγ and W+jet Monte Carlo (MC) ## Estimating the jet→γ backgrounds - Jet→γ fake rate determination - Muon-, jet-, and photon-triggered datasets to determine the fake rate - Fake rate = (# of photons)/(# of fakeable objects) - Fakeable object: still EM-like, but failing some important photon ID cuts - Real photon component in tight photon sample extracted from fit to MC shower shape template and subtracted - Strong dependence on p_T, no dependence on lηl in EB - ME_T spectrum of lepton + fakeable object data control sample weighted by E_Tdependent fake rate #### Fakeable object definition: | Cut | Value | |-----------------|---| | рт | >20 GeV | | ΙηΙ | <1.4 | | ECAL isolation | <min(5 (0.006e<sub="" ×="">T + 4.2 GeV), 0.2E_T)</min(5> | | HCAL isolation | <min(5 (0.0025e<sub="" ×="">T + 2.2 GeV), 0.2E_T)</min(5> | | Track isolation | <min(5 (0.001e<sub="" ×="">T + 3.5 GeV), 0.2E_T)</min(5> | and | Cut | Value | | | |-----------------|-----------------------------------|--|--| | ECAL isolation | >(0.006E _T + 4.2 GeV) | | | | or | | | | | HCAL isolation | >(0.0025E _T + 2.2 GeV) | | | | or | | | | | Track isolation | >(0.001E _T + 3.5 GeV) | | | | or | | | | | σηη | >0.013 | | | ## Estimating backgrounds from MC Syst.(10% from halving/doubling factorization and renormalization scale) ⊕ - Wγ background in photon + lepton search → syst.(<2% PDF uncertainty [16]) ⊕ syst.(4% luminosity) - Modeled with MadGraph MC, tune D6T - K-factors estimated from BAUR NLO generator using CTEQ66 NLO PDF sets - K-factors range from ~2-3, depending on photon E_T - Leading order photon E_T spectrum modified by K-factors, but ME_T and M_T distributions are much more stable with respect to NLO effects - Background to single photon search from ttbar/W/Z→hadrons + ISR/FSR photon is small (total <1 event in ME_T ≥ 200 GeV vs. ~10 events from other background sources) and taken from Pythia MC simulation with 100% uncertainty # Table of backgrounds | Туре | Events | stat. error | scal. error | norm. error | |---------------------------|---------------|-------------|-------------|-------------| | $\gamma\gamma$ candidates | 0 | | | | | ff QCD background | 2.3 ± 2.2 | ± 2.19 | ± 0.13 | ± 0.10 | | ee QCD background | 0.8 ± 0.8 | ± 0.82 | ± 0.02 | ± 0.03 | | EWK background | 0.3 ± 0.1 | ± 0.06 | ± 0.0 | ± 0.03 | | Total background (ff) | 2.5 ± 2.2 | | | | | Total background (ee) | 1.3 ± 0.8 | | | | #### Double photon | Sample | Event yield | | | |---|-------------|------------|------------| | | | (stat.) | (syst.) | | Data | 7 | | | | QCD (est. from data) | 5.16 | ± 2.58 | ± 0.62 | | EWK $e \rightarrow \gamma$ (est. from data) | 1.22 | ± 0.13 | ± 0.04 | | FSR/ISR ($W \rightarrow \mu/\tau\nu$, $Z \rightarrow \nu\nu$) (Sim.) | 0.80 | ± 0.31 | ± 0.80 | | FSR/ISR ($t\bar{t} \rightarrow \mu/\tau \nu + X$) (Sim.) | 0.07 | ± 0.05 | ± 0.07 | | Total SM background estimate | 7.24 | ± 2.6 | ± 1.53 | Single photon Errors: stat. ⊕ syst.(ME_T shape from reweighting) ⊕ syst.(normalization) | e+γ+ME _T | | | |----------------------------|---------------------------|--| | Sample | ME _T > 100 GeV | | | Wγ (MC) | 1.68 ± 0.42 | | | jet→γ | 0.02 ± 0.02 | | | е→γ | 0.04 ± 0.03 | | | QCD (di-e pred.) | 0.00 ± 0.00 | | | Total background | 1.74 ± 0.43 | | | Data | 1 | | | GGM prediction 3.38 ± 0.68 | | | | μ+γ+ME _T | | | |---------------------|---------------------------|--| | Sample | ME _T > 100 GeV | | | Wγ (MC) | 1.40 ± 0.37 | | | jet→γ | 0.10 ± 0.09 | | | е→γ | 0.09 ± 0.04 | | | QCD (di-e pred.) | 0.00 ± 0.00 | | | Total background | 1.59 ± 0.39 | | | Data | 1 | | | GGM prediction | 4.41 ± 0.88 | | Photon + lepton ## NLO cross sections Bino NLSP Wino NLSP ## MET with(out) jet requirement #### No jet requirement #### Simulated GGM single photon event display ### References - 1. A. García-Bellido, arXiv:hep-ex/0210001v1 (2002). - 2. B.C. Allanach et al., Eur. Phys. J. **C25** (2002) 113. - 3. V. Abazov et al., Phys. Rev. Lett. **105** (2010) 221802. - 4. B. Brau, arXiv:1007.2244v2 [hep-ex] (2011). - 5. CERN/LHCC 97-33 (1997). - 6. G. Bozzi, F. Campanario, M. Rauch, D. Zeppenfeld, arXiv:1103.4613v1 [hep-ph] (2011). - 7. http://lhcnewphysics.org/p.000.00.r000 - 8. M. Botje et al., arXiv:1101.0538v1 [hep-ph] (2011). - 9. A. Read, J. Phys. G **28** (2002) 2693. - 10. K. Nakamura et al., J. Phys. G **37** (2010) 075021. - 11. C. Quigg, arXiv:0908.3660v2 [hep-ph] (2009). - 12. CMS Collaboration, CERN-PH-EP/2010-053 (2010). - 13. CMS-PAS-EGM-10-005 (2010). - 14. CERN-CMS-DP-2010-014 (2010). - 15. CMS Collaboration, CERN-PH-EP/2011-102 (2011). - 16. D. Bourilkov, R.C. Group, M. R. Whalley, arXiv:hep-ph/0605240v2 (2006); http://www.hep.ucl.ac.uk/pdf4lhc/PDF4LHCrecom.pdf (2010).